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A partially submerged propeller theory was developed by employing a singularity 
distribution method. Unsteady pressure doublets and pressure sources represented 
the blade camber and blade-and-cavity thickness respectively. The induced velocities 
were derived by reducing the formula to a lifting-line configuration. The free-surface 
effect was considered by use of the image method. The induced velocities contained 
the singular integrals of 5th order, which are usually numerical unstable. An effort 
was made to derive numerically stable formulae from these singular equations by 
applying a method similar to the induction-factor method of Morgan & Wrench (1965) 
and Lerbs (1952) used for steady-state fully wetted propeller problems. These new 
formulae are not only applicable to the present partially submerged ventilated 
propeller problem, but also to general unsteady subcavitating and cavitating 
propeller problems such as propeller starting-up and non-periodic loading problems. 
By combining the two-dimensional water entry-and-exit theory of Wang (1979), the 
thrust and torque coefficients were calculated for representative partially sub- 
merged propellers and favourably compared with the experimental data. 

1. Introduction 
In  recent years partially submerged air-ventilated propellers have attracted 

growing attention as efficient thrusting devices for high speed sea craft. Potentially, 
this type of propeller provides a better performance than fully submerged super- 
cavitating propellers. This seems attributable to the following two major factors : 

(i) reduction of the hydrodynamic resistance for the appendages such as shafts, 
struts, etc., which would support the propeller in water; and 

(ii) reduction of the adverse cascade effect by providing the free surface for 
air ventilation. 

The origin of the partially submerged propeller goes back to the late 19th century, 
and many such propellers have been tested with different types of boats since then. 
(Hadler & Hecker (1968) summarized its history in their report.) Most of the 
development conducted for the propeller was, however, on a trial-and-error basis and 
until recently no theoretical foundation existed for improvement of the partially 
submerged propeller performance. The pioneer work in this subject was provided by 
Yim (1969,1971,1974) who developed the theory for the hydrodynamic entry-and- 
exit characteristics of the thin foil and symmetric wedge with ventilation. The method 
applied there assumed the two-dimensional flow field by unfolding the cylindrical 
plane which is the rotational path of a blade at a certain radius. The problem to be 
solved was therefore that of an unsteady blade motion going in (entry) and out (exit) 
of this water layer. Using a similar two-dimensional assumption, Wang (1977, 1979) 
recently solved a rather complete water entry-and-exit problem including such 
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features as general nonsymmetric blade profile, ventilation and oblique entry-and- 
exit. This facilitated a convenient and powerful tool for determining the two- 
dimensional sectional loading for practical blade profiles at various entry and exit 
angles. 

All the theoretical works conducted so far were based on the two-dimensional 
assumptions and, to the best of our knowledge, there is no three-dimensional theory 
for partially submerged propellers with ventilation. The preliminary work for this 
problem was conducted by the author who incorporated various three-dimensional 
effects such as propeller configurations and presence of a free surface. The unsteady 
propeller theory developed there used a linearized approximation for velocities and 
thus could solve a linearized equation of motion for a potential function 6. This 
function 6 was then determined by distributing the pressure doublets and pressure 
sources which represented the blade camber and blade-and-cavity thickness, respec- 
tively. The induced velocities were then derived by taking the derivatives of 6. Up 
to this point the theory was developed as a lifting-surface theory. However, for 
simplicity, this lifting-surface expression was reduced to that of lifting line by 
shrinking the propeller chord to a single line with the total amount of loading lift 
remaining the same. In order to represent the free-surface effect for propeller 
performance, the image method was applied. For the image of pressure doublet, that 
of the same strength and sign was distributed, whereas, for the image of pressure 
source, that of the same strength but with negative sign was distributed, both on 
the location of the mirror image with respect to a free surface. 

The induced velocities obtained there included the integrals of the fifth-order 
singularities. A singular integral method of Hadamard (see the report by Mangler 
(1951) for its detailed treatment) was employed to avoid the numerical instabilities, 
but resulted in only partial success. As the numerical control points along the span 
direction increased, first the results showed a trend of convergence but then started 
diverging as the number of points further increased. Although the solutions of 
intermediate convergence were presented and compared with the experimental data 
of Hadler and Hecker, the accuracy of these solutions was uncertain. 

The objective of the present work was, therefore, to improve the accuracy of the 
theory by resolving the numerical instabilities encountered in the previous work. In  
order to avoid these numerical instabilities, instead of finding other numerical 
integral methods, better mathematical formulae for calculating the induced velocities 
were sought. It means that effort has been made to convert the integrals having the 
fifth-order singularities into those of the third-order singularities. This type of 
conversion is typical in the steady-state lifting-line theory but had not been done for 
the unsteady problem. The conversion has been successfully done here and the 
numerical stability and accuracy are then guaranteed by using the concept of 
induction factors similar to that of Lerbs (1952) and Morgan & Wrench (1905). 

In  the following the mathematical formulation, solution method and numerical 
analysis will be described in detail, followed by some representative results of 
computations obtained with the present theory. Although many experiments have 
been conducted to date regarding the partially submerged propeller, they are not 
readily available. We have thus chosen the experimental data of Hadler & Hecker 
(1908), which existed in the open literature, for comparison. 
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FIGURE 1.  A schematic diagram for propeller flow configuration in which the propeller rotates 

at a fixed position while the flow approaches with the uniform velocity U. 

2. Mathematical formulation 
2.1. Basic equations 

Figure 1 shows a schematic diagram of a partially submerged propeller blade rotating 
around the z-axis in the uniform flow of velocity U approaching from the negative 
infinity of z. This type of flow model is similar to that used by Cox (1968) who 
developed the theory for eupercavitating propellers. The propeller shaft line re- 
presented by the x-axis is placed in the air domain, a distance of d from the free- 
surface boundary. The cylindrical coordinate system (z, r, 8 )  will be used throughout 
the present analysis with no subscripts for the coordinate 8 fixed on the blade and 
with subscripts 0 for the inertial coordinate 8. The time is measured when the 
centreline component of the blade helical plane is at 8, = 0 so that the time 
corresponding to that of figure 1 is interpreted as of negative value. It means that 
the event of propeller rotation s t a d d  at some negative time. In  order to identify 
the quantities related to the blade singularities from those of interest we will use 
superscripts * for the latter. 

In  the present analysis an unsteady linearized theory with inviscid and no-gravity 
assumptions is employed. The velocity components in the z, r,  8, directions are 
written as (U+u,., wr., uea). Defining the perturbed velocity quantities (uZ., ur., uea) 
by u, one can write a linearized equation of motion: 
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which can be expressed in terms of a velocity potential @: 

a@ a@ $3 
at ax* p y  
-+u-=-- 

where u = V*@, (2) 

and $3 is the static pressure of the fluid. Solving (1) for @ gives: 

U x* - (v + dv, @(x*, r*, 6:; t )  = -- I ('" f (v+x, r*, e:, t -  u -aJ P 
(3) 

where the boundary condition p = 0 at x* = -a has been used. Applying the 
continuity equation div u = 0 to (1) and (2), we obtain the Laplace equation for #: 

v*y = 0. 

Green's theorem will be used for $3 which satisfies the above Laplace equation so that 
the solution for @ can be expressed : 

where 

p(x* ,  T * ,  0:; t )  E pressure due to the real blade (pressure doublet term) 

@(x*,r*,O:; t )  = p + b ,  (4) 

and cavity (pressure source term) I 

#*, r*, 0:; t )  = pressure due to the image blade and cavity 

Ap E p + - p - ,  

n E normal to linearized surface, positive from pressure side to suction 
side, 

[(x* - z)'+ T' + r*I - 2rr* cos Y0]4 Ry0 
P, = t9,-e:+g,, 

e, = e - o t ,  

27t 
K V,E-( (k- l ) ,  

K E number of blades 

8 moving surface consisting of propeller blade surface S, and cavity 
surface S,, 
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S,,, S,  = propeller blade and cavity surfaces, respectively, where, to satisfy the 
zero-pressure condition on the free surface, the image part f i  has 
been added in (4) with the pressure doublet term of the same sign 
and the pressure source of the opposite sign. Detailed derivations of 
the image part will be treated separately later. 

The detailed description for the image part will be provided later. 

pitch in the r-direction; 
The moving blade surface S is considered to be composed of helical lines of varying 

S :  z-ORA(r) = 0, h = U(r) /wR,  

where A denotes advance coefficient aa a function of r .  It must be mentioned now 
that the theory developed here will be applied to the wake-adapted field by varying 
h as a function of r as is seen above. By using the gradient components of this helical 
plane, one can write the directional derivative a/an, as follows : 

a a RA a 
r -- r(8, + wt)  RA, --- - 

ax ar r a8, 
[r2 + (RA)% + (r(8, + w t )  RA,)*]t ’ 

-=-  a 
an, 

(7) 

where A, = dA/dr. Thus 

(8) 

(9) 

”(+ r(x*-z)+RAr* sin Yo-r(8,+ot) RA,(r-r* cos Yo) 
an, R ,  [r2 + + (r(8, + wt) RA,}2$ Rg0 

and 

In order to derive a simplified first-cut method of partially submerged propeller 
theory we take only the doublet effects for the present analysis, neglecting the source 
effects, i.e. the cavity-thickness effects on the induced flow velocities. Therefore 
substitution of (8) and (9) into (5 )  yields 

dS = [t + (RA)a + {@,+ wt) RA,}2]i d8 dr. 

where 
2* - (v + 5) 

U ’  
7 = t -  

yV = e--w7-e:+ck, (12) 

Nv = rv+RAr* sin Y v - r ( 8 , + ~ ) R A r ( ~ - r *  cos Vv), (13) 

R, = [v* + r2 + T** - 2rr* cos YV$, (14) 

OL, 8, = angular coordinates of the blade leading and trailing edges, 
respec tivel y , 

and tip measured from the centre of shaft, respectively. 
rf, R = radial coordinates defining the radial distances at the free surface 

Substituting (10).into (3), one obtains 

@(z*, r*, 8:; t )  = -- N V  

R: 
- Ap(r, 8, ~ ( v ) )  - do. (15) 

1 

I1 F L Y  151 
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A further simplification of the problem is made by representing each of the submerged 
blades as a lifting line so that one can define the dipole-like singularity 

S(8) = Dirac delta function. 

The velocity potential @ in (15) is now written under the linearized lifting-line 

Before calculating the induced velocities from @, all variable numbers will be 
non-dimensionalized and indicated by an overbar : 

(18) 
F- - 

F(r, 7 ) d  dr, J” dVJ1 R; 
- 
qz*,  r*, 8:; t )  = -+ x 

k --oO R ( s ( i 9 )  

where the normalization has been made as follows ; 

(5*, F*,Z, F, V )  = (x*, r * , z , r ,  v ) / R ,  
- @ - P  
@=-, p=- 

RU 2npu2’ 

X r  = A, R.  

Since a lifting-line approach is used, x and 8 in (17) have been set to zero. Thus 
7 in (11) becomes 

The overbars used to identify the non-dimensional quantities will be dropped 
hereafter : all quantities from now on are non-dimensionalized. The induced velocities 
due to a series of the vortex sheets are then calculated: 

It should be noted here that the order of integration between r and v has been 
changed. This change has been made carefully, particularly for the integration limit 
in r ; in order to cover the maximum blade-wetted length, the lower limit now should 
be d (the distance of the free surface measured from the centre of shaft, normalized 
by R ) .  This does not mean that the induced velocities are independent of the 
time-varying blade-wetted length. Such effect is properly taken care of by the 
integration in the v-direction; during the v-integration, the arc length of integration 
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r 
FIGURE 2. A projected view of blade passage and a typical set of control points used for numerical 
calculations when the control points and 0 denote those of finite loading and zero loading, 
respectively. 

in the water layer at each fixed r varies since the blade-wetted length changes (see 
figure 2). Since P(r, T ( v ) )  becomes zero at the free-surface, the second term disappears 
and thus : 

Furthermore, with the following identity, 

a Nv 3vNv a N ,  
ax* [Rd = (&--)-%[%]' -- 

(24) becomes 

11-2 
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Integration by parts for the last integral I in (25) will yield 

Since NJRt becomes zero as u+co and aP/av  = -aP/ax*, by using (22), (25) can 
finally be written 

u,+ = -?iX I’ dr J P(r,T(u))($-F) du. 

This form is similar to the induced velocity in the x-direction obtained by Cox (1968) 
except that P ( r , ~ ( u ) )  here is a function of both r and time so that this term is now 
inside the integral for u. It might not be immediately apparent that the loading term 
P in Cox’s expression for the steady case could be moved into the u-integral without 
the detailed derivation like the one made above. 

The induced velocity in the tangential direction is obtained in a similar manner: 

(26) 
X* 3uNv 

k d - W  V V 

1 a@ 
r* ae: k r* 30: R !j X { Jl dr r* - i a  - [g., ~ ( u ) )  31 du. (27) ueg(x*, r* ,  by; t )  = - - = - 

r 
A 

- A  cos Yv+-(u-x*)A, sin Yv 
+ 3 N ~ r  sin .) &I. (28) 

Rr R: 

A Hadamard numerical integral method (see the report of Mangler (1951) for a 
detailed treatment) for handling the singularities of fifth order in u,. and ueg was used 
for (26) and (28). It was discovered, however, that there existed a numerical 
instability; the numerical results first converged as the mesh size of numerical control 
points decreased, but started diverging as the mesh size was further reduced. The 
Hadamard integral method which was successfully used for the airfoil integral, did 
not work properly due to the fifth-order singularities existing in the propeller integrals 
instead of the third-order singularities in the airfoil integrals. The present work was 
therefore devoted to fixing this numerically unstable problem by entirely changing 
the forms for u,. and ueg. 

2.2. Induction factors for unsteady wakes 
The philosophy adopted here for avoiding the numerical instability is similar to that 
of Moriya (1942), Lerbs (1952) and the work later elaborated on by Morgan & Wrench 
(1965). Since the propeller problem treated by these researchers was the steady flow 
one and thus had uniform wakes, they were able to introduce the idea of the induction 
factors. All integrals for obtaining the induction factors were reduced to those 
involving only the third-order singularities where the loading part was expressed in 
terms of the derivative with respect to r .  By virtue of the steady flow assumption, 
they were finally converted into the series of Bessel functions. The real challenge 
for the present unsteady case will, therefore, be (i) to derive analytically the integral 
forms similar to those in the steady problem mentioned above, and then (ii) to assure 
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numerically the accuracy of the calculation of these integrals by having lower-order 
singularities. 

First, the integral dummy variables v in (26)  and (28)  are changed to new angular 
variables 8 with the following relationship : 

v-x* 
A 

8 = -&--- e: . 

By rewriting the lifting-line induced velocities in the x- and &direction by a more 
conventional expression, i.e. w, and wt respectively, we can write 

wB = uZ+(x*, r*,  0:; t )  

where 

R,- = [ ( - A & f + ~ * ) 2 + r ~ + r * ~ - 2 r r *  cos Y,-]i, 

N,- = r(-Ao+x*)+Ar* sin Y,-+Arr8(r-r* cos Yg), 

Y,-= 8+8:+a,, 
4: = - ot - 0: (this value will be zero for the induced velocity calculation on 

the lifting line itself since 0: = -o t ) ,  

A = U(r)/wR, 

A, = (dA/dr) R (since this is a non-dimensional expression). 

Since P is a function of both r and 8, the following identities have been derived 
successfully after lengthy algebraic computations : 

RB RI  =--[ ar Ri ]-a[ R$ 1' (32) 
a r(r-r*  COB Y,-) a r* sin Yi T 3( - A@+ x*)  Ng -- 

- A cos Y,-- A, rg sin Yi 3N,- T sin Y,- 

R: 
+ 

R88 
- r cos Y,-) + ( -A&+ x*) r sin Y,- 

R; 1 

By using these identities, the kernel function of the integrals for w, and wt in (30) 
and (31) will be converted into the radial and tangential derivative forms with only 
the third-order singularities. Performing integration by parts in terms of r and 8, we 
obtain 
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and 

wt(x*, r*, e,* ; t )  

It is seen clearly from these results that the induced velocities obtained here consist 
of two parts, i.e. the steady pert relating to a(AP)/ar and the unsteady part relating 
to i3P/i38. For the case of the steady propeller flow problem, aP/ae becomes zero and 
W / a r  becomes independent of 8. w, and w, in (34) and (35) will be reduced to a form 
identical with those of the steady flow case in Cox (1968). It is considered that the 
present results will be extremely useful, not only to the current partially submerged 
propeller problems, but also in analysing any general unsteady propeller flows. 

w, and w, in (34) and (35) can be further modified for securing numerical stability: 

where 

Itr(r, r*) = X Jm {$ [ W r ,  T(g))I} 
k o  

d8, (40) 
( r -r*)  {A(r* - r  cos Yg) + ( - ~ 8 + x * )  r sin ~ g }  

X 

R; 
3 P ( r , 7 ( 4 )  s I&, r*) = x 

k O  

dJ, (41) 
r(r-r*){-(-AhB+z*)  cos Y~+A,8(r*-rcos1Yg} 

RBB 
X 

and the integration order between r and 8 has been changed with the same 
justification as for (23). I,,, I&, It,, Itgin (38)-(41) are similar to the induction factors 
introduced by Lerbs ( 1952), who developed the steady-state propeller lifting-line 
theory. In the steady-state problem (a/&) [AP(r, 7(8))] is independent of 8, so that 
this term can be taken out of the &integrals. Without the terms of (a/&) [AP(r, ~(8))], 
I,, and I,, should be identical with the induction factors of Lerbs, who calculated 
them in a totally different way, as mentioned before. In order to test the accuracy 
of the numerical integral method to be employed for the present analysis, I,, and 
It, in (38) and (40) were numerically calculated with a(AP)/ar = 1,  z: = 0 and 
0: = --ot for various r/r* ratios and bi0 (flow pitch angles) by applying Simpson's 
rule. It was found that for large bi0 such as 60" and r/r* ratios larger than 0.6. I,, 
and I,, agreed with those of Lerbs to an accuracy within 0.1 yo for ten turns of wakes, 
whereas, for smaller bio such as 15O and r/r* less than 0.6, the errors were about 3 yo. 
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FIGURE 3. Mirror image point used for the second method of calculating 
the induced velocity effect due to the image wakes. 

However, the accuracy greatly improved if twenty turns of wakes were taken for the 
numerical calculations, with the accuracy less than 1 % for all combinations of pi,, 
and r / r* .  Furthermore, since the errors were observed at only small r / r* ,  they would 
play a negligibly small role in the overall integral with respect to r for the final values 
of w, and wt (a sample case showed an error less than 0.1 %). Also, I,, and I,, values 
calculated with the present method showed smooth transition near r/r* = 1, taken 
to be unity. Finally, reducing the integral intervals in both B and r made the 
calculated values of the integrals converge to single numbers. 

It has now been determined that by applying the integral method mentioned above 
to la,, Iag, I,, and It;, with P varying as a function of Bowing to the flow unsteadiness, 
we can obtain accurate and numerically stable induced velocities for the present 
partially submerged propeller problem. 

The method for obtaining the image-induced velocities is rather simple ; instead 
of constructing the image wake system in the air domain, we will first obtain the 
mirror image for the point of interest on the lifting-line and then obtain the induced 
velocities due to the real wake systems. In this flow configuration, the relative 
geometry between the point of interest and wake system is identical to the one 
considered above except that the wake helical windings are in the opposite direction. 
This means that the induced velocity in the x-direction will be added to  the real part, 
whereas that in the tangential direction will have to be subtracted from the 
counterpart. 

The only work needed to implement the above method is to obtain new coordinates 
for the point of the lifting-line in the water, i.e. (x*, r*, 0:). Defining the image point 
by (x*’, r*’, @’), one will readily find the following relationships (see figure 3) : 

(42) I x*f = x* = 0, 

r*‘ cos0,*‘ = r* COS~:, 

r* sin 0: + r*’ sin 0:’ = 2d. 

It is straightforward to obtain (z*’, r*’, 0:’) from (42) once (z*, r * ,  0:) are given. These 
new coordinate points will be substituted into (36) and (37) to obtain the induced 
velocities wa and ut due to the image wakes: 

wa = w,(O, r*’, 0:’(t); t )  in (36), (43) 

ut = w,(O, r*’, 0,*’(t); t )  in (37). (44) 
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FIGURE 4. Local flow configuration in the two-dimensional plane. 

The total induced velocities are finally obtained as follows : 

E wa = wa(O,r*, --wt; t)+w,(O,r*’,B:’(t); t ) ,  

E wt = wt(O,r*, --wt; t )+wt(O,r*’ ,Bt’( t ) ;  t ) .  

(45) 

(46) 

3. Solution method 

relationship shown in figure 4, i.e. 
The off-design propeller problem to be solved here is to satisfy the velocity vector 

- [l +X wt(P(r*, ae(r*), t ) ) ]  = 0 for all r*, (48) 

wherepg is a propeller geometric parameter, see figure 4. In  (48)) the P-function should 
be determined as functions of r* and time (or the relative position of the blade in 
reference to the free surface). 

The relationship between the lifting forces and the P-function will be given as 
follows : 
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where c = chord, 

U, = effective relative velocity, 

= [( U +  w , ) ~  + (wr + w,I2$, 

C ,  = lift coefficient, 

U = Va if no wake reduction factor is considered. 

In order to account for the induced-flow effects on the location of the vortex sheets, 
use of hi(r) instead of h(r) is recommended, where 

u+X wa(r) 
h,(r) = x tanpi = 

w r - E  wt(r) R’ 

Unlike the Prandtl type of steady-state three-dimensional wing problem, the 
P-function cannot be expressed conveniently in terms of Fourier series for two 
reasons. First, P is an intermittent function of time, increasing from zero to the 
maximum value, decreasing back to zero when the blade is out of water and staying 
zero until the next entry of the blade into water. Secondly the span length of a blade 
continuously changes as it moves and the P-function does not have similarity even 
for the normalized span scale. 

We propose a method for solution which will employ a numerical iterative method 
as in Furuya (1980). First, we use the geometric incidence angle at each blade 
spanwise position to calculate the lifting force as a function of blade location or time. 
D. P. Wang’s (1979) blade entry and exit theory will be used to evaluate this loading 
function P through (48 )  by assuming C w, = X w, = 0. Once the initial distribution 
of P is given as functions of r* and t ,  the induced flow velocities X wa and Z w, will 
be calculated from the formula obtained in the previous section. These induced 
velocities now change the local effective flow incidence angles a,. With a new set of 
a,, a new loading function P is Calculated again with the two-dimensional water 
entry-exit method. This iterative procedure will be repeated until a convergent 
solution is obtained. 

4. Calculations of two-dimensional sectional loadings with D. P. Wang’s 
program 

In order to determine the strength of circulation at various blade radial stations 
in the propeller lifting-line theory, the two-dimensional lifting force must be described 
as functions of blade geometry, angle of incidence, submergence depth and angle of 
entry or exit. D. P. Wang (1979) recently developed the theory for solving the 
problem of oblique water entry and exit for a fully ventilated foil. The theory 
employed a linearized initial-value problem approach for the mixed-typed boundary 
condition. However, the computer program developed there is only applicable to foils 
having straight line and circular arc camber prdiles. In  practice, ventilating 
propellers under the partially submerged condition are usually designed to have a 
somewhat different type of foil profile shape. One of the most frequently used blade 
profiles for this t,ype of propeller is the two-term camber of Tulin-Bukart (1955), 
which is expressed in the following equation : 

YB = @ ( 2 B + 5 4 - 4 2 & ) + B 2 B ,  (51) 
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Model 3768 Model 4002 

r l R  
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

A 

0.01718 
0.08446 
0.11974 
0.13748 
0.14516 
0.14514 
0.13606 
0.12734 

B 

0.00286 
0.01408 
0.01996 
0.02291 
0.02419 
0.02419 
0.02268 
0.02122 

A 
0 
0.05833 
0.08333 
0.09552 
0.09583 
0.08729 
0.07982 
0.08855 

B 

0 
0.00972 
0.01389 
0.01592 
0.01597 
0.0 1455 
0.01330 
0.01476 

TABLE 1 .  Two-term camber profiles for NSRDC propeller models 3768 and 4002 (see Hadler & 
Hecker (1968)) defined by yB = & ~ ( Z ~ + : Z \ - ~ Z ~ ) + B Z ~ ,  equation (51). 

where the first group of terms in the brackets is the two-term camber part and Bx 
is merely a rotation of the (2, 9)-coordinates. It is readily understood that the terms 
related to z and 2 represent the straight line and circular arc profiles, respectively, 
whereas a term proportional to d is the specific term in the two-term camber profile. 
Incidentally, the partially submerged propellers, Models 3767 and 4002, tested by 
Hadler & Hecker (1968) had the two-term camber expressed in (51). Table 1 presents 
the values of coefficients A and B at various radial stations. More generally, 
supercavitating or fully ventilated blade profiles can be written 

m 

In order to handle these general blade profile cases the Wang’s computer code needed 
modification involving detailed understanding of the various variable transformation 
and singularity removal techniques used in the program. After this modification was 
made, the program has become much easier for users to incorporate any type of blade 
profile shape such as expressed in (51) or (52); the only change of the computer code 
to be made for different types of profile now is that of a subroutine specifying the 
profile shape. 

With this modified computer code we made computations for lift and drag forces 
for the Tulin-Bukart two-term camber at  various water depths and angles of blade 
entry and exit, the results being shown in figures 5-8. Use will be made of these graphs 
as follows. Assuming that the two-term camber is given by (51) with h / x  and A ,  the 
force coefficients for the two-term camber and straight line can be read from each 
graph. The total C ,  and C ,  will then be calculated: 

where Ad =0.10186, which corresponds to C,, = 0.2, and a, denotes the flow 
incidence angle. This calculation should be made for all h / n  and h since the specified 
h/x  and h for which C, and C, are to be calculated are usually different from those 
for which the present computation was made. Then an interpolation method is 
necessary in h/n and h planes to finally determine C ,  and C ,  for the specified values 
of h/n and A. The computer code developed for the propeller calculation uses one such 
interpolation scheme. Incidentally, the accuracy of the modified Wang computer code 
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FIGURE 6. As figure 4 except that hla = 1.0. 

was checked by increasing h/n values to 5 ,  10, etc. for the two-term camber, and it 
was observed that calculated C ,  values asymptotically approached 0.2. Since A, used 
here corresponds to the lift coefficient when C,, = 0.2, it was considered that the 
accuracy of the computer code, as well as the theory, has been proved. 

One of the most interesting features regarding the two-term camber used for the 
partially submerged propeller appears in the results of the calculations for the present 
two-dimensional sectional characteristics. For a short time period immediately after 
a blade leading-edge entry into the water, the lifting forces for the two-term camber 
show negative values. As the blade proceeds and has a larger submergence, these 
negative values turn around and rapidly change to positive values. This means that 
the blade tip material experiences the oscillatory force from a negative to a positive 
value at each cycle of rotation. The reason for this phenomenon can readily be 
understood if one closely investigates the profile shape of the two-term camber, 
particularly near the leading edge where negative slope exists (see figure 9). When 
only the blade tip is plunged into water, the lifting force is naturally negative. 
However, as a larger portion of the blade is submerged into the water, the positive 
camber starts taking effect and thus the direction of force changes. 

Also, these lift and drag forces during such a critical period were calculated on the 
assumption that the face portion of the blade is wetted and the back portion has 
ventilation. This assumption may be erroneous; the flow configuration to be used for 
such a case is that the face part must have ventilation whereas the back part must 
be fully wetted. As the blade proceeds, the water starts filling in the face part, possibly 
trapping the air near the leading edge while the back part cannot sustain the negative 
pressure so that cavitation and/or ventilation may suddenly take place. Therefore 
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FIQURE 7. As figure 4 except that hlx = 1.5. 

FIQURE 8. As figure 4 except that hlx = 2.0. 

the change of forces near the leading edge may be even more drastic than is shown 
in figures 5-8; i t  could even be of impulse type. 

In  any case, this type of repeated oscillatory force will easily lead to material failure 
due to fatigue phenomena. According to private communications with D. P. Wang 
and from other documents, the partially submerged propeller can survive only for 
a few hours of operation, ending with material breakdown. As a matter of fact, most 
of the partially submerged propellers designed to  date employ the two-term or similar 
camber profiles (see table 1). The findings mentioned here suggest that  the use of the 
two-term or higher-order cambers, known to be superior in the area of fully submerged 
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Negative slope 
region 

FIGURE 9. Schematic diagram for Tulin-Bukart two-term camber. 

supercavitating propellers, are not necessarily suitable for the environment encoun- 
tered by the partially submerged propeller. Since material failure is the most critical 
problem in this type of propeller design, the selection of the propeller blade profile 
needs specific consideration for material integrity as well as for avoidance of 
oscillatory forces at the time of entry. One of the possible candidates for the leading- 
edge profile used for the partially submerged propeller may be that of smooth straight 
line, wedge type or even finite thickness with a rounded leading edge followed by an 
appropriate camber profile. 

5. Thrust and power coefficients 
The time-averaged thrust and power coefficients cT and c, can be calculated as 

follows. The thrust and power forces for the kth blade at an instantaneous time t 
or equivalently at a rotational angle 0 (see figure 2) are given as: 

R 

T(O+a,) = jdR {CL+pu2,C cospi-(D+Df) sinp,}dr, (54) 

r R  

P(8 + a,) = 1 -- wr{CL ipvZ, C sin pi + (D + Of) cospi} dr, (55) 
d R  

where D = form drag on the blade, D(r, 8) ,  

D, = friction drag, D,(r, B ) ,  

U ,  = [ ( w r - x  W , ) Z + ( V + ~  w,)~]]: (see figure a), 

pi = tan-' '+' wa (see figure 4). 
wr-' W, 

First T and P are normalized: 

= 4 s,' {% hP cosp,-- 1 (C,+C,,) c (2y - sin pi) df. 
4n 
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where 

6 = normalized chord (=  c / R ) .  

In order to obtain the averaged thrust and power cozfficients cT and cp, Tk and Pk 
must be integrated over one rotation of propeller and then be divided by 27t : 

The conversion of CT and cp into more conventional thrust and torque coefficients 
RT and RQ is a simple matter, i.e. 

where the definition of gT and KQ is given by 

g - p ( e + g k )  

- 32pn2R5 ' 

The averaged efficiency of the propeller is thus 

6. Results 
The computer program was developed on the basis of the new theory and was 

applied for calculating the off-design performance of two different types of partially 
submerged propellers : NSRDC Propeller Model 3768 and 4002. The geometric 
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Model 3768 Model 4002 

Diameter 10 in. 12 in. 
Number of blades 3 2 
Camber 
P / D  at x = 0.7 1.180 1.319 

2-term camber (see table 1 )  2-term camber (see table 1) 

TABLE 2. Propeller characteristics of NSRDC propeller models 3768 and 4002 

- A A A U =  10.3 f.p.s Experiment 
o o o U =  20.7 f.p.s 1 (Hadler & Hecker 1968) 

- 

- Theory 

- 

- - 

- 0 0  0 

& A A A  A A A  

- 
0 A 0 

0 

- 0 0  8 - 
- 10 RQ 0 

A A 
0 - - A A  0 

A A  - - 

- - 0 

1 1 1 1 1 1 1 1 1 1 1  I I I I l b  
0.4 0.5 0.6 0.7 0.8 0.9 1 .o 1.1 1.2 1.3 

Model 3768 Model 4002 

Radial 
station/ R 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Chord/R 

0.7640 
0.7640 
0.7640 
0.7620 
0.7460 
0.7020 
0.6120 
0.4600 

Geometric 
blade angle pg 

61.966' 
51.385' 
43.199' 
36.9 14' 
32.047' 
28.217' 
25.150' 
22.653' 

Chord/R 

0.6876 
0.6876 
0.6876 
0.6858 
0.671 4 
0.6318 
0.5508 
0.4140 

Geometric 
blade angle Pg 

64.1 18' 
54.049' 
46.033' 
39.767' 
34.850' 
30.949' 
27.816' 
25.250' 

TABLE 3. Detailed blade characteristics of propeller models 3768 and 4002 

FIGURE 10. Comparison between the present theory and experimental data of Hadler & Hecker 
(1968) for &. and of propeller model 3768 at submergence 40 yo. 
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FIGURE 11.  Comparison between the present theory and experimental data of Hadler & Hecker 
(1968) for & and RQ of propeller model 4002 at submergence 33.3 %. 
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characteristics of these propellers were given in Hadler & Hecker (1968) who 
conducted water tunnel tests for these propellers with submerged depth of 40 yo and 
33.3 yo, respectively (the submergence depth was defined with respect to the propeller 
diameter). Some of the important features used for the present computations are 
summarized in tables 2 and 3. 

The calculated results for the time-averaged thrust and torque coefficients ZT and 
xQ in (58) and (59) are shown in figures I0  and 11 and compared with the 
experimental data of Hadler & Hecker (1968). The experimental data used in this 
comparison for Propeller Model 3768 are those with incoming tunnel flow speeds of 
U = 10.3 f.p.s. and 20.7 f.p.s. For U = 10.3 f.p.s., much more data than are shown 
here (particularly beyond J = 0.6) are available in their report. However, they 
indicated that the transition from the leading-edge ventilation to the base-ventilated 
condition took place at around J = 0.5. Since the base-ventilated flow configuration 
is not of current interest, the data beyond J = 0.5 were omitted from the present 
comparison. On the other hand, for the data taken at U = 20.7 f.p.s., there was no 
indication of such flow transition in the report. It is assumed that the flow 
configuration matches that of the current theory and all available data are presented. 
For the propeller model 4002, Hadler and Hecker conducted the experiments with 
variable incoming speeds and did not indicate the transition point in their data 
presentation. All experimental data for 4002 are presented for comparison. 

In any case the thrust coefficients obtained with the present theory compare 
favourably with the experimental data over a wide range of J, whereas there exists 
some discrepancy for the torque coefficients. Various reasons for the discrepancy are 
considered and can be summarized as follows: 

(i) The two-dimensional loadings used in the present calculations are those obtained 
with Wang’s (1979) program which was based on the linearized theory. According 
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FIGURE 14. Variation of a, as a function of rotational angle at various blade radial locations 
for model 3768 at submergence of 40 yo and J = 1 .O. 
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FIGURE 15. Variation of ( W J U )  and W J U )  as a function of rotational angle at various blade 
radial locations for model 3768 at submergence of 40 Yo and J = I .O. 
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to the recent investigations of D. P. Wang (private communication), the effect of 
nonlinearity during the phase of blade entry sometimes accounts for 20-30 yo of the 
forces by the linearized theory. This difference may be because the linearized theory 
is unable to determine the accurate wetted area of the blade during the entry phase. 

(ii) In the present computations the pressure doublet terms only were considered 
in the evaluation of the induced velocities and the pressure source terms were 
neglected. It has been reported in many documents that the thickness effect of blade 
or cavity plays an important role in the propeller performance prediction theory (see 
e.g. Kerwin & Leopold (1963) and Furuya (1980)). 

(iii) There exists some uncertainty in interpreting the experimental data, partic- 
ularly for the case of 4002 as mentioned above. As is seen in figure 11, both RT and 
I?Q suddenly increase at around J = 0.3 - 0.4. There is a suspicion that this 
behaviour represents the transition from the fully ventilated flow to the base- 
ventilated flow. If that is the case, the flow configurations of the theory and 
experiments are not comparable and thus the comparison beyond J of larger than 
say 0.4 may not be appropriate. 

(iv) There exists a limitation of the present lifting-line theory, particularly in the 
range of small J where the induced velocities become substantial. 

Figures 12-15 present the detailed calculated data for 3768 at J = 1.0. Figure 12 
shows the time-dependent KT and KQ as a function of blade rotation. Angle 8 of 
the horizontal axis in this figure is measured from the point when a blade is located 
at the shaft centreline level. Since propeller 3768 has three blades, the shaft forces 
are periodic over every 120' of rotation, as is seen from figure 12. The broken lines 
show KT and KQ at each blade, indicating that the water entry point of the blade 
is about 12O of rotation after the blade passes the shaft centreline. 

Figure 13 shows the calculated results of the variation in local lifting forces on the 
blade at various spanwise points as a function of blade location. Figures 14 and 15 
show their corresponding effective flow incidence angles, and the induced velocities, 
w,/U and ( -wt/U), respectively. With the information provided in figures 13-15, 
together with the geometric data shown in table 2, one can readily construct the flow 
diagram a t  any location of the propeller model 3768 for J = 1.0. 

The numerical aspects of the present unsteady propeller problems with the new 
formula obtained will be discussed in detail in a separate paper in the near future. 

7. Conclusions 
The purpose of the present work was to develop a mathematical model for solving 

the time-dependent partially submerged propeller problems and computer program 
with suitable numerical methods. In the previous work of the author direct integral 
forms were derived for calculating the induced velocities together with the application 
of the Hadamard integral method. Unfortunately, this effort resulted in numerical 
instabilities. Based on the experience encountered there, new mathematical formulae 
have been successfully developed by converting the fifth-order singularities into 
third-order singularities. The formulae are similar to those shown by Morgan & 
Wrench (1965) utilizing the concept of the induction factors (see also the work by 
Lerbs (1952)). These new formulae are not only applicable to the present partially 
submerged ventilated propeller problem but also useful for analysing and designing 
any unsteady subcavitating and cavitating propeller problems, the loading of which 
does not necessarily have to be periodic. 

With the new development of the unsteady propeller lifting-line theory here, the 

, 
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singular integrals in determining the induced velocities have become numerically 
stable. By combining the two-dimensional water entry-and-exit theory of Wang 
(1979), the numerical results have been obtained and compared with the existing 
experimental data of Hadler k Hecker (1968). It has been found that the overall 
comparison for KT is excellent, and that for KQ is moderate, presumably due to the 
various power losses such as those of entry and exit splashes and cavity thickness 
effects, not accounted for in the present method. 

This project was supported by the David W. Taylor Naval Ship Research and 
Development Center of the U.S. Navy, under Contract No. N00167-80-C-0044. The 
author thanks Dr W. Morgan, Messrs D. Cieslowski and V. Monacella of NSRDC and 
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